论文标题
polyakov循环晶格模型的双重公式
Dual formulations of Polyakov loop lattice models
论文作者
论文摘要
二元表示是针对所有n和任何维度的U(n)和SU(N)对称组的非亚伯晶格自旋模型的构建。这些模型通常与描述强耦合QCD中Polyakov环之间相互作用的有效模型有关。最初的自由度自由度已明确整合,并且双重理论似乎是双整数值变量的局部理论。为分区函数和最通用的相关函数执行构造。后者包括对应于Quark-Anti-Quark自由能的两点函数以及与Baryon的自由能有关的N点函数。我们考虑具有任意数量的口味的交错和威尔逊费米子的纯仪表模型和具有静态费物的模型。尽管在非零化学势的存在下,这种模型的玻尔兹曼权重很复杂,但双玻尔兹曼的重量似乎严格在可接受的构型上是阳性的。关于以前的研究,这项工作的一个重要部分是将双重表示的扩展到1)威尔逊动作中时间耦合常数的任意值和2)任意数量的静态夸克决定因素的风味。结果的应用和扩展将进行详细讨论。特别是,我们概述了对双重理论的蒙特卡洛模拟,大型N扩展和张量重量化组的发展的可能方法。
Dual representations are constructed for non-abelian lattice spin models with U(N) and SU(N) symmetry groups, for all N and in any dimension. These models are usually related to the effective models describing the interaction between Polyakov loops in the strong coupled QCD. The original spin degrees of freedom are explicitly integrated out and a dual theory appears to be a local theory for the dual integer-valued variables. The construction is performed for the partition function and for the most general correlation function. The latter include the two-point function corresponding to quark-anti-quark free energy and the N-point function related to the free energy of a baryon. We consider both pure gauge models and models with static fermion determinant for both the staggered and Wilson fermions with an arbitrary number of flavours. While the Boltzmann weights of such models are complex in the presence of non-zero chemical potential the dual Boltzmann weights appear to be strictly positive on admissible configurations. An essential part of this work with respect to previous studies is an extension of the dual representation to the case of 1) an arbitrary value of the temporal coupling constant in the Wilson action and 2) an arbitrary number of flavours of static quark determinants. The applications and extensions of the results are discussed in detail. In particular, we outline a possible approach to Monte-Carlo simulations of the dual theory, to the large N expansion and to the development of a tensor renormalization group.