论文标题

全球潜在混合的半监督医学图像分类

Semi-supervised Medical Image Classification with Global Latent Mixing

论文作者

Gyawali, Prashnna Kumar, Ghimire, Sandesh, Bajracharya, Pradeep, Li, Zhiyuan, Wang, Linwei

论文摘要

通过深度学习的计算机辅助诊断依赖于大规模注释的数据集,在涉及专家知识时,这可能是昂贵的。半监督学习(SSL)通过利用未标记的数据来减轻这一挑战。一种有效的SSL方法是通过围绕单个数据点的扰动来使神经功能的局部平滑度正常。在这项工作中,我们认为,通过填充数据点之间的空隙来使神经功能的全球平滑度正规化可以进一步改善SSL。我们提出了一种新颖的SSL方法,该方法在输入和潜在空间上都在标记和未标记数据的线性混合上训练神经网络,以便使网络的不同部分正常。我们在两个不同的医学图像数据集上评估了胸部疾病和皮肤病变的半监督分类的两个不同的医学图像数据集,这表明其在SSL上的性能提高了局部扰动,并且SSL与全局混合,但仅在输入空间处。我们的代码可从https://github.com/prasanna1991/latentmixing获得。

Computer-aided diagnosis via deep learning relies on large-scale annotated data sets, which can be costly when involving expert knowledge. Semi-supervised learning (SSL) mitigates this challenge by leveraging unlabeled data. One effective SSL approach is to regularize the local smoothness of neural functions via perturbations around single data points. In this work, we argue that regularizing the global smoothness of neural functions by filling the void in between data points can further improve SSL. We present a novel SSL approach that trains the neural network on linear mixing of labeled and unlabeled data, at both the input and latent space in order to regularize different portions of the network. We evaluated the presented model on two distinct medical image data sets for semi-supervised classification of thoracic disease and skin lesion, demonstrating its improved performance over SSL with local perturbations and SSL with global mixing but at the input space only. Our code is available at https://github.com/Prasanna1991/LatentMixing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源