论文标题

矩阵张量产品的信息理论限制

Information-Theoretic Limits for the Matrix Tensor Product

论文作者

Reeves, Galen

论文摘要

本文研究了涉及随机矩阵矩阵张量产物的高维推理问题。这个问题概括了许多当代数据科学问题,包括用于稀疏主成分分析和协方差估计的尖刺矩阵模型以及网络分析中使用的随机块模型。主要结果是单字母公式(即,可以在数值上近似的分析表达式)以及贝叶斯最佳设置中所有随机数量分布的最佳均值误差(MMSE)。我们提供了非反应界限,并表明我们的公式在高维度中准确地描述了共同信息和MMSE中的领先顺序项,其中行$ n $的数量和列$ d $ scale的数量$ d = o(n^α)$的$α<1/20 $。 在技​​术方面,本文引入了一些新技术,用于分析高维矩阵值信号。具体的贡献包括自适应插值方法的新型扩展,该方法使用订单的阳性半际插值路径,以及基于连续时间I-MMSE关系的重叠和自由能之间的差异不平等。

This paper studies a high-dimensional inference problem involving the matrix tensor product of random matrices. This problem generalizes a number of contemporary data science problems including the spiked matrix models used in sparse principal component analysis and covariance estimation and the stochastic block model used in network analysis. The main results are single-letter formulas (i.e., analytical expressions that can be approximated numerically) for the mutual information and the minimum mean-squared error (MMSE) in the Bayes optimal setting where the distributions of all random quantities are known. We provide non-asymptotic bounds and show that our formulas describe exactly the leading order terms in the mutual information and MMSE in the high-dimensional regime where the number of rows $n$ and number of columns $d$ scale with $d = O(n^α)$ for some $α< 1/20$. On the technical side, this paper introduces some new techniques for the analysis of high-dimensional matrix-valued signals. Specific contributions include a novel extension of the adaptive interpolation method that uses order-preserving positive semidefinite interpolation paths, and a variance inequality between the overlap and the free energy that is based on continuous-time I-MMSE relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源