论文标题

扩散张量分布的基质矩

Matrix moments of the diffusion tensor distribution

论文作者

Reymbaut, A.

论文摘要

目的:使用参数矩阵变量分布来促进信号表示和模型的实现/验证,以近似扩散张量分布(DTD)$ \ MATHCAL {P}(\ MATHBF {D})$。理论:我们建立了实用的数学工具,即DTD的矩阵矩,从而可以计算与任何与任何参数矩阵变量DTD相关的平均扩散张量和协方差张量,其矩创功能是已知的。作为概念证明,我们将这些工具应用于非中心基质变量伽马(NC-MV-GAMMA)的分布,其协方差张量迄今尚不清楚,并设计了一个新的信号表示,通过单个NC-MV-MV-Gamma分布捕获内静脉内异质性:Matrix-Variate-Variate-Variate gamama近似。方法:进一步概念证明,我们在人脑“张量”扩散MRI数据集中评估了计算机和体内的基质变量伽马近似。结果:基质变量伽马近似无法捕获因取向分散体以及痕量(尺寸)和各向异性(形状)在基础扩散张量的同时方差而产生的异质性,这是由与NC-MV-MV-MV-MV-Gamma分布相关的共证量张镜的结构来解释的。结论:矩阵矩促进了矩阵变化分布的更广泛使用,作为DTD的合理近似,通过减轻其顽固性,从而促进矩阵变量微观结构技术的设计/验证。

Purpose: To facilitate the implementation/validation of signal representations and models using parametric matrix-variate distributions to approximate the diffusion tensor distribution (DTD) $\mathcal{P}(\mathbf{D})$. Theory: We establish practical mathematical tools, the matrix moments of the DTD, enabling to compute the mean diffusion tensor and covariance tensor associated with any parametric matrix-variate DTD whose moment-generating function is known. As a proof of concept, we apply these tools to the non-central matrix-variate Gamma (nc-mv-Gamma) distribution, whose covariance tensor was so far unknown, and design a new signal representation capturing intra-voxel heterogeneity via a single nc-mv-Gamma distribution: the matrix-variate Gamma approximation. Methods: Furthering this proof of concept, we evaluate the matrix-variate Gamma approximation in silico and in vivo, in a human-brain 'tensor-valued' diffusion MRI dataset. Results: The matrix-variate Gamma approximation fails to capture the heterogeneity arising from orientation dispersion and from simultaneous variances in the trace (size) and anisotropy (shape) of the underlying diffusion tensors, which is explained by the structure of the covariance tensor associated with the nc-mv-Gamma distribution. Conclusion: The matrix moments promote a more widespread use of matrix-variate distributions as plausible approximations of the DTD by alleviating their intractability, thereby facilitating the design/validation of matrix-variate microstructural techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源