论文标题
长字符总和
Long large character sums
论文作者
论文摘要
在本文中,我们证明了$ \ underSet {χ\ neqχ_0} {\ max} \ big | \ sum_ {n \ leq x}χ(n)\ bigG | $,当$ x = \ frac {q} {(\ log q){(\ log q){(\ log q){(当总结范围广泛时,Granville和Soundararajan的结果都会改善。当$ b $变为零时,我们的下限将恢复大多数字符的字符总和的预期最大值。
In this paper, we prove a lower bound for $\underset{χ\neq χ_0}{\max}\bigg|\sum_{n\leq x} χ(n)\bigg|$, when $x= \frac{q}{(\log q)^B}$. This improves on a result of Granville and Soundararajan for large character sums when the range of summation is wide. When $B$ goes to zero, our lower bound recovers the expected maximal value of character sums for most characters.