论文标题

芒果:平行超参数调整的Python库

MANGO: A Python Library for Parallel Hyperparameter Tuning

论文作者

Sandha, Sandeep Singh, Aggarwal, Mohit, Fedorov, Igor, Srivastava, Mani

论文摘要

调整用于机器学习算法的超参数是一项繁琐的任务,通常是手动完成的。为了实现自动化的超参数调整,最近的工作已经开始使用基于贝叶斯优化的技术。但是,实际上,为了实现大规模机器学习培训管道的自动调整,现有库中仍然存在巨大差距,包括缺乏抽象,容错性和灵活性以支持任何分布式计算框架上的调度。为了应对这些挑战,我们提出了芒果,这是一个平行超参数调整的Python库。芒果可以使用任何分布式的调度框架,实现智能并行搜索策略,并提供丰富的抽象来定义与Scikit-Learn兼容的复杂超参数搜索空间。芒果的性能与另一个广泛使用的库Hyperopt相当。芒果可用开源,目前可用于ARM Research的生产中,以提供最先进的高参数调整功能。

Tuning hyperparameters for machine learning algorithms is a tedious task, one that is typically done manually. To enable automated hyperparameter tuning, recent works have started to use techniques based on Bayesian optimization. However, to practically enable automated tuning for large scale machine learning training pipelines, significant gaps remain in existing libraries, including lack of abstractions, fault tolerance, and flexibility to support scheduling on any distributed computing framework. To address these challenges, we present Mango, a Python library for parallel hyperparameter tuning. Mango enables the use of any distributed scheduling framework, implements intelligent parallel search strategies, and provides rich abstractions for defining complex hyperparameter search spaces that are compatible with scikit-learn. Mango is comparable in performance to Hyperopt, another widely used library. Mango is available open-source and is currently used in production at Arm Research to provide state-of-art hyperparameter tuning capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源