论文标题

多组SIS流行与简单和高阶相互作用

Multi-group SIS Epidemics with Simplicial and Higher-Order Interactions

论文作者

Cisneros-Velarde, Pedro, Bullo, Francesco

论文摘要

本文分析了易感感染感染的(SIS)模型的流行病传播对超图,并以重要的特殊情况的激励,我们将模型引用了Simplicial SIS模型。从经典上讲,多组SIS模型已经假设了跨组传染的成对相互作用,因此在文献中已经进行了广泛的研究。直到最近,才引起了更新的特别关注,以研究高阶相互作用和更通用的图形结构(如单纯形)的研究。 Simpicial SIS模型的平均场近似标量模型的先前工作表明,与经典SIS模型相比,新的动力学行为域是由于新引入的高阶相互作用项而出现的:无病平衡和一个地方性平衡共存,并且都是局部均不稳定的。本文正式确定了多组Simpicial SIS模型中也出现了双重性(作为一种新的流行病学行为)。我们为模型的参数提供了足够的条件,以使其外观和经典多组SIS模型中存在的其他行为域。我们还提供了一种算法来计算地方性平衡的值,并报告了从无疾病域到Bissable域的过渡的数值分析。

This paper analyzes a Susceptible-Infected-Susceptible (SIS) model of epidemic propagation over hypergraphs and, motivated by an important special case, we refer to the model as to the simplicial SIS model. Classically, the multi-group SIS model has assumed pairwise interactions of contagion across groups and thus has been vastly studied in the literature. It is only recently that a renewed special attention has been drawn to the study of contagion dynamics over higher-order interactions and over more general graph structures, like simplexes. Previous work on mean-field approximation scalar models of the simplicial SIS model has indicated that a new dynamical behavior domain, compared to the classical SIS model, appears due to the newly introduced higher order interaction terms: both a disease-free equilibrium and an endemic equilibrium co-exist and are both locally asymptotically stable. This paper formally establishes that bistability (as a new epidemiological behavior) also appears in the multi-group simplicial SIS model. We give sufficient conditions over the model's parameters for the appearance of this and the other behavioral domains present in the classical multi-group SIS model. We additionally provide an algorithm to compute the value of the endemic equilibrium and report numerical analysis of the transition from the disease-free domain to the bistable domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源