论文标题

多视图偏光散射云断层扫描和液滴尺寸的检索

Multi-view polarimetric scattering cloud tomography and retrieval of droplet size

论文作者

Levis, Aviad, Schechner, Yoav Y., Davis, Anthony B., Loveridge, Jesse

论文摘要

断层扫描旨在恢复培养基或物体的三维(3D)密度图。在医学成像中,它通过X射线计算机断层扫描(CT)广泛用于诊断。光学扩散断层扫描是X射线CT的替代方法,该X射线CT使用乘散射光来为软组织提供粗密度图。我们通过被动遥感来定义和推导云液滴分布的断层扫描。我们使用多视图极化图像来拟合3D极化辐射转移(RT)正向模型。我们的动机是垂直发达的对流驱动的云的3D体积探测,这些云通过操作被动遥感中的当前方法不足。这些技术基于严格的1D RT建模,并应用于单个多云的像素,其中云几何形状被认为是平面平行板的几何形状。一旦被云散布的阳光降解,就会根据液滴尺寸改变其极化状态。因此,可以使用彩虹和荣耀角区域中的极化测量值来推断液滴尺寸分布。这项工作定义并得出了整个云液滴的完整3D断层扫描的框架,包括它们在太空中的质量集中及其在各种尺寸上的分布。我们的新型方法可以使这种关键微物理特性的3D检索涉及,该方法涉及开源偏振3D RT代码的重组和分化,以适应一种特殊的两步优化技术。物理上现实的合成云用于证明具有严格的不确定性定量的方法。

Tomography aims to recover a three-dimensional (3D) density map of a medium or an object. In medical imaging, it is extensively used for diagnostics via X-ray computed tomography (CT). Optical diffusion tomography is an alternative to X-ray CT that uses multiply scattered light to deliver coarse density maps for soft tissues. We define and derive tomography of cloud droplet distributions via passive remote sensing. We use multi-view polarimetric images to fit a 3D polarized radiative transfer (RT) forward model. Our motivation is 3D volumetric probing of vertically-developed convectively-driven clouds that are ill-served by current methods in operational passive remote sensing. These techniques are based on strictly 1D RT modeling and applied to a single cloudy pixel, where cloud geometry is assumed to be that of a plane-parallel slab. Incident unpolarized sunlight, once scattered by cloud-droplets, changes its polarization state according to droplet size. Therefore, polarimetric measurements in the rainbow and glory angular regions can be used to infer the droplet size distribution. This work defines and derives a framework for a full 3D tomography of cloud droplets for both their mass concentration in space and their distribution across a range of sizes. This 3D retrieval of key microphysical properties is made tractable by our novel approach that involves a restructuring and differentiation of an open-source polarized 3D RT code to accommodate a special two-step optimization technique. Physically-realistic synthetic clouds are used to demonstrate the methodology with rigorous uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源