论文标题
$*$ - $ c^{*} $ - 代数上的jordan-type地图
$*$-Jordan-type maps on $C^{*}$-algebras
论文作者
论文摘要
令$ \ mathfrak {a} $和$ \ mathfrak {a}'$为两个$ c^*$ - 具有身份的代数$ i _ {\ mathfrak {\ mathfrak {a}} $和$ i _ {\ mathfrak {\ mathfrak {a} $ \ mathfrak {a} $中的P_1 $非平地投影。在本文中,我们研究了乘法$*$ - 约旦式地图的表征。特别是,如果$ \ Mathcal {m} $是von Neumann代数的因素,那么每个Bioxtive Unital乘法$*$ - Jordan-type地图都是$*$ - 戒指同构。
Let $\mathfrak{A}$ and $\mathfrak{A}'$ be two $C^*$-algebras with identities $I_{\mathfrak{A}}$ and $I_{\mathfrak{A}'}$, respectively, and $P_1$ and $P_2 = I_{\mathfrak{A}} - P_1$ nontrivial projections in $\mathfrak{A}$. In this paper we study the characterization of multiplicative $*$-Jordan-type maps. In particular, if $\mathcal{M}$ is a factor von Neumann algebra then every bijective unital multiplicative $*$-Jordan-type maps are $*$-ring isomorphisms.