论文标题

具有优化的隐藏节点分布的自适应前馈神经网络控制

Adaptive Feedforward Neural Network Control with an Optimized Hidden Node Distribution

论文作者

Liu, Qiong, Li, Dongyu, Ge, Shuzhi Sam, Ouyang, Zhong

论文摘要

隐藏节点的晶格分布的复合自适应径向基函数神经网络(RBFNN)具有三个固有的脱落:1)很难确定自适应rbfnns的近似结构域; 2)只能保证激发(PE)条件的部分持久性; 3)通常,RBFNNS所需的隐藏节点数量巨大。本文提出了一个自适应馈电RBFNN控制器,并具有优化的隐藏节点分布,以适当解决上述内容。由K-均值算法计算出的隐藏节点的分布沿所需的状态轨迹最佳分布。自适应RBFNN满足周期参考轨迹的PE条件。所有隐藏节点的权重将收敛到最佳值。这种提出的方​​法大大减少了隐藏节点的数量,同时实现了更好的近似能力。拟议的控制方案在两种特殊情况下具有与经典PID控制的合理性相似的理性,因此可以将其视为具有更好近似能力的增强PID方案。对于由数字设备实施的控制器,对于具有未知动力学的操纵器而言,所提出的方法可能比具有准确动力学的模型基于模型的方案实现更好的控制性能。显示结果证明了该方案的有效性。该结果为自适应神经网络控制和确定性学习理论的协调提供了更深入的了解。

Composite adaptive radial basis function neural network (RBFNN) control with a lattice distribution of hidden nodes has three inherent demerits: 1) the approximation domain of adaptive RBFNNs is difficult to be determined a priori; 2) only a partial persistence of excitation (PE) condition can be guaranteed; and 3) in general, the required number of hidden nodes of RBFNNs is enormous. This paper proposes an adaptive feedforward RBFNN controller with an optimized distribution of hidden nodes to suitably address the above demerits. The distribution of the hidden nodes calculated by a K-means algorithm is optimally distributed along the desired state trajectory. The adaptive RBFNN satisfies the PE condition for the periodic reference trajectory. The weights of all hidden nodes will converge to the optimal values. This proposed method considerably reduces the number of hidden nodes, while achieving a better approximation ability. The proposed control scheme shares a similar rationality to that of the classical PID control in two special cases, which can thus be seen as an enhanced PID scheme with a better approximation ability. For the controller implemented by digital devices,the proposed method, for a manipulator with unknown dynamics, potentially achieves better control performance than model-based schemes with accurate dynamics.Simulation results demonstrate the effectiveness of the proposed scheme. This result provides a deeper insight into the coordination of the adaptive neural network control and the deterministic learning theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源