论文标题

一声无监督的跨域检测

One-Shot Unsupervised Cross-Domain Detection

论文作者

D'Innocente, Antonio, Borlino, Francesco Cappio, Bucci, Silvia, Caputo, Barbara, Tommasi, Tatiana

论文摘要

尽管过去几年的对象检测进展令人印象深刻,但可靠地检测到视觉域的对象仍然是一个开放的挑战。尽管该主题最近引起了人们的关注,但当前的方法都依赖于访问大量目标数据以便在培训时使用的能力。这是一个沉重的假设,通常无法预料使用检测器的域,也无法预先访问它进行数据获取。例如,考虑从社交媒体监视图像提要的任务:由于每个图像都是由其他用户创建和上传的,因此它属于不同的目标域,在培训期间不可能预见。本文介绍了此设置,提出了一种能够通过仅使用一个目标样本(在测试时间看到的目标样本)进行跨域的对象检测算法。我们通过引入多任务架构来实现这一目标,该体系结构单次镜头可以通过迭代地解决其上的自我监督任务来适应任何传入的样本。我们通过交叉任务伪标记进一步增强了这种辅助适应。针对最新的跨域检测方法和详细的消融研究的彻底基准分析显示了我们方法的优势,该方法在定义的单次场景中设定了最新的方法。

Despite impressive progress in object detection over the last years, it is still an open challenge to reliably detect objects across visual domains. Although the topic has attracted attention recently, current approaches all rely on the ability to access a sizable amount of target data for use at training time. This is a heavy assumption, as often it is not possible to anticipate the domain where a detector will be used, nor to access it in advance for data acquisition. Consider for instance the task of monitoring image feeds from social media: as every image is created and uploaded by a different user it belongs to a different target domain that is impossible to foresee during training. This paper addresses this setting, presenting an object detection algorithm able to perform unsupervised adaption across domains by using only one target sample, seen at test time. We achieve this by introducing a multi-task architecture that one-shot adapts to any incoming sample by iteratively solving a self-supervised task on it. We further enhance this auxiliary adaptation with cross-task pseudo-labeling. A thorough benchmark analysis against the most recent cross-domain detection methods and a detailed ablation study show the advantage of our method, which sets the state-of-the-art in the defined one-shot scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源