论文标题
由椭圆形准级不平等影响的最佳控制问题的收敛结果
Convergence Results for Optimal Control Problems Governed by Elliptic Quasivariational Inequalities
论文作者
论文摘要
我们考虑一个最佳控制问题$ \ cq $,由椭圆形的准级别不平等,单方面约束。问题的最佳对的存在是一个众所周知的结果,例如,请参见\ cite {ss}。我们将新的最佳控制问题$ \ wq $与$ \ cq $联系起来,该问题是通过扰动状态不等式(包括约束和非线性运算符的集合)和成本功能获得的。然后,我们提供足够的条件,以保证问题$ \ wq $与问题$ \ cq $的解决方案的收敛。这些证明是基于椭圆形准分子不平等现象的收敛结果,该结果是通过使用紧凑,较低的半内态,单调性,惩罚和各种估计的参数获得的。最后,我们说明了抽象收敛的使用导致研究与两个边界值问题相关的最佳控制研究。第一个描述了与障碍物,即所谓的基础,弹性体的平衡。该过程是静态的,接触是按照正常合规性和单方面约束建模的,与库仑的干摩擦定律有关。第二个描述了具有单方面约束的固定传热问题。对于这两个问题,我们证明存在,独特性和收敛结果以及相应的物理解释。
We consider an optimal control problem $\cQ$ governed by an elliptic quasivariational inequality with unilateral constraints. The existence of optimal pairs of the problem is a well known result, see \cite{SS}, for instance. We associate to $\cQ$ a new optimal control problem $\wQ$, obtained by perturbing the state inequality (including the set of constraints and the nonlinear operator) and the cost functional, as well. Then, we provide sufficient conditions which guarantee the convergence of solutions of Problem $\wQ$ to a solution of Problem $\cQ$. The proofs are based on convergence results for elliptic quasivariational inequalities, obtained by using arguments of compactness, lower semicontinuity, monotonicity, penalty and various estimates. Finally, we illustrate the use of the abstract convergence results in the study of optimal control associated with two boundary value problems. The first one describes the equilibrium of an elastic body in frictional contact with an obstacle, the so-called foundation. The process is static and the contact is modeled with normal compliance and unilateral constraint, associated to a version of Coulomb's law of dry friction. The second one describes a stationary heat transfer problem with unilateral constraints. For the two problems we prove existence, uniqueness and convergence results together with the corresponding physical interpretation.