论文标题
捕获液态气流的接口捕获方法在低仪数下流动
An interface capturing method for liquid-gas flows at low-Mach number
论文作者
论文摘要
在广泛的科学和工程问题中,多相,可压缩和粘性流至关重要。尽管在过去几十年中,付出了巨大的努力来开发准确有效的数值技术来解决这类问题,但仍需要进一步改进当前的模型以解决现实的应用程序。在这种情况下,我们提出了一种数值方法,用于模拟多相,粘性流,其中可压缩和不可压缩的相位在低射击数字方面相互作用。在此框架中,声学是被忽略的,但是可压缩相的密度变化也可以解释以及传热,对流和扩散过程。该问题在充分利用Navier-Stokes方程的低操作渐近扩展的完全欧拉框架中解决。使用的流体方法(VOF)用于捕获液体气体界面,该液体界面构建在大型平行求解器顶部,二阶在时间和空间上精确。二阶压力项被隐式处理,并使用稳健和新颖的配方使用特征力方程来解决所得压力方程。我们提供了理论方法的详细而完整的描述,以及有关数值技术和实现细节的信息。为五个不同的测试用例提供了基准测试的结果。
Multiphase, compressible and viscous flows are of crucial importance in a wide range of scientific and engineering problems. Despite the large effort paid in the last decades to develop accurate and efficient numerical techniques to address this kind of problems, current models need to be further improved to address realistic applications. In this context, we propose a numerical approach to the simulation of multiphase, viscous flows where a compressible and an incompressible phase interact in the low-Mach number regime. In this frame, acoustics is neglected but large density variations of the compressible phase can be accounted for as well as heat transfer, convection and diffusion processes. The problem is addressed in a fully Eulerian framework exploiting a low-Mach number asymptotic expansion of the Navier-Stokes equations. A Volume of Fluid approach (VOF) is used to capture the liquid-gas interface, built on top of a massive parallel solver, second order accurate both in time and space. The second-order-pressure term is treated implicitly and the resulting pressure equation is solved with the eigenexpansion method employing a robust and novel formulation. We provide a detailed and complete description of the theoretical approach together with information about the numerical technique and implementation details. Results of benchmarking tests are provided for five different test cases.