论文标题

$ f(r)$重力的球形对称解决方案具有动力学曲率标量

Spherical symmetric solutions of $f(R)$ gravity with a kinetic curvature scalar

论文作者

Chervon, Sergey, Fabris, Julio, Fomin, Igor

论文摘要

我们将带有动力学曲率标量的修改后的$ f(r)$重力视为球形对称时空中的手性自我磨损模型。当修饰的重力转换为约旦一号的爱因斯坦框架时,大多数注意用于寻找特殊情况缩放转化的解决方案。我们提出了确定给定标量场对空间坐标的动力学功能的方法。找到新的解决方案,用于特殊选择$ f(r)$函数。

We consider modified $f(R)$ gravity with a kinetic curvature scalar as a chiral self-gravitating model in a spherically symmetric spacetime. Most attention devoted to finding solutions for special case of scaling transformation when modified gravity transforms to Einstein frame from Jordan one. We proposed the method of determination of kinetic function for given scalar field dependence on space coordinate. New classes of solutions are found for special choice of $f(R)$ function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源