论文标题

早期质量变化的中微子暗能量:掘金形成和哈勃异常

Early mass varying neutrino dark energy: Nugget formation and Hubble anomaly

论文作者

Gogoi, Antareep, Sharma, Ravi Kumar, Chanda, Prolay, Das, Subinoy

论文摘要

我们提出了一种新颖的场景,其中光($ \ sim $少数\ rm {ev})黑暗费米子(无菌中微子)与标量场相互作用,例如质量变化的中微子暗能量理论。随着$ \ rm {ev} $无菌状态在物质辐射平等之前自然变得非偏见(MRE),我们表明中微子量表液会形成强烈的扰动不稳定,然后形成中微子 - 核球,而早期的深色能量行为消失在MRE周围。当费米压力平衡有吸引力的标量力时,可以实现掘金的稳定性,并且我们通过求解标量场的静态配置来数字地找到重冷掘金的质量和半径。我们发现,对于DM掘金密度是亚显着的情况,并且大多数早期能量都进入标量场动力学时,它原则上可以放松哈勃异常。尤其是当动能统治相位后的动能阶段时,DE密度比辐射更快地稀释,并满足求解$ H_0 $异常的要求。在我们的情况下,与最初提出的早期黑能理论不同,暗能量密度由($ \ rm {ev} $)中微子质量控制,并且不需要微调的EDE量表。我们执行MCMC分析,并使用Planck +鞋子和BAO数据对抗我们的模型,并在MRE期间找到非零中微子量表EDE密度的证据。我们的分析表明,该模型与鞋子尺寸($ h_0 = 74.03 \ pm 1.42 $ km/s/s/mpc)一致。

We present a novel scenario, in which light ($\sim$ few \rm{eV}) dark fermions (sterile neutrinos) interact with a scalar field like in mass varying neutrino dark energy theories. As the $\rm{eV}$ sterile states naturally become non-relativistic before the Matter Radiation Equality (MRE), we show that the neutrino-scalar fluid develops strong perturbative instability followed by the formation of neutrino-nuggets and the early dark energy behaviour disappears around MRE. The stability of the nugget is achieved when the Fermi pressure balances the attractive scalar force and we numerically find the mass and radius of heavy cold nuggets by solving for the static configuration for the scalar field. We find that for the case when DM nugget density is sub-dominant and most of the early DE energy goes into scalar field dynamics, it can in principle relax the Hubble anomaly. Especially when a kinetic energy dominated phase appears after the phase transition, the DE density dilutes faster than radiation and satisfy the requirements for solving $H_0$ anomaly. In our scenario, unlike in originally proposed early dark energy theory, the dark energy density is controlled by ($\rm{eV}$) neutrino mass and it does not require a fine tuned EDE scale. We perform a MCMC analysis and confront our model with Planck + SHOES and BAO data and find an evidence for non-zero neutrino-scalar EDE density during MRE. Our analysis shows that this model is in agreement of nearly 1.3$σ$ with SHOES measurement which is $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源