论文标题

通过迭代推理进行加强学习,以合并浓厚的流量

Reinforcement Learning with Iterative Reasoning for Merging in Dense Traffic

论文作者

Bouton, Maxime, Nakhaei, Alireza, Isele, David, Fujimura, Kikuo, Kochenderfer, Mykel J.

论文摘要

对于自动驾驶汽车而言,在密集的交通中进行操作是一项具有挑战性的任务,因为它需要对许多其他参与者的随机行为进行推理。此外,代理必须在有限的时间和距离内实现机动。在这项工作中,我们提出了增强学习和游戏理论的结合,以学习合并行为。我们使用级别$ K $行为的概念为增强学习代理设计培训课程。这种方法在训练过程中将代理暴露于各种各样的行为,这促进了对模型差异的强大学习政策。我们表明,我们的方法比传统的培训方法学习更有效的政策。

Maneuvering in dense traffic is a challenging task for autonomous vehicles because it requires reasoning about the stochastic behaviors of many other participants. In addition, the agent must achieve the maneuver within a limited time and distance. In this work, we propose a combination of reinforcement learning and game theory to learn merging behaviors. We design a training curriculum for a reinforcement learning agent using the concept of level-$k$ behavior. This approach exposes the agent to a broad variety of behaviors during training, which promotes learning policies that are robust to model discrepancies. We show that our approach learns more efficient policies than traditional training methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源