论文标题
关于广义三角多项式的Fejer-Riesz分解
On a Fejer-Riesz factorization of generalized trigonometric polynomials
论文作者
论文摘要
单位光盘上的功能理论证明了统计,概率理论,信号处理文献和应用的一系列问题的关键,在此中,特殊位置被三角函数占据,而fejer-riesz定理则可以将非阴性三角学多项式用于同一级别的多项式元素的模量表示。在本说明中,我们考虑了与指定的非平凡极点(即,除了在原点或无穷大)相差的非负三角多项式的自然概括。我们对相应的光谱因子感兴趣,具体而言,我们表明三角多项式的分解可以与Fejer-Riesz定理完全类似。分解与Fejer-Riesz定理的亲和力以及与经典频谱分解的对比在于,光谱因子的程度小于分解理论中的标准构造理论所暗示的程度。我们提供了这两个基本定理的两个并列证据,尽管是严格阳性的情况,一种依赖于分析插值理论,另一个依赖于基于yacubovich-popopov-kalman(YPK)正面现实震动的经典分解理论。
Function theory on the unit disc proved key to a range of problems in statistics, probability theory, signal processing literature, and applications, and in this, a special place is occupied by trigonometric functions and the Fejer-Riesz theorem that non-negative trigonometric polynomials can be expressed as the modulus of a polynomial of the same degree evaluated on the unit circle. In the present note we consider a natural generalization of non-negative trigonometric polynomials that are matrix-valued with specified non-trivial poles (i.e., other than at the origin or at infinity). We are interested in the corresponding spectral factors and, specifically, we show that the factorization of trigonometric polynomials can be carried out in complete analogy with the Fejer-Riesz theorem. The affinity of the factorization with the Fejer-Riesz theorem and the contrast to classical spectral factorization lies in the fact that the spectral factors have degree smaller than what standard construction in factorization theory would suggest. We provide two juxtaposed proofs of this fundamental theorem, albeit for the case of strict positivity, one that relies on analytic interpolation theory and another that utilizes classical factorization theory based on the Yacubovich-Popov-Kalman (YPK) positive-real lemma.