论文标题
贝叶斯风格的,基于深度学习的,半监督的域名适应技术,用于土地覆盖映射
A Bayesian-inspired, deep learning-based, semi-supervised domain adaptation technique for land cover mapping
论文作者
论文摘要
土地覆盖地图是许多类型的环境研究和管理的重要输入变量。尽管可以通过机器学习技术自动生产它们,但这些技术需要大量的培训数据才能达到高水平的准确性,这并不总是可用。研究人员在标记的训练数据稀缺时使用的一种技术是域的适应性(DA),其中使用了替代区域(称为源域)的数据来训练分类器,并且该模型适用于映射研究区域或目标域。我们在本文中解决的情况称为半监督DA,其中一些标记的样品在目标域中可用。在本文中,我们介绍了一种贝叶斯风格的,基于深度学习的,半监督的DA技术,用于从数据数据中生成土地覆盖地图。该技术采用了在源域上训练的卷积神经网络,然后在可用的目标域上进一步训练,并在可用的目标域上使用新颖的正规器应用于模型权重。正常器调整了修改模型以符合目标数据的程度,从而限制了目标数据数量很少并随着目标数据数量增加而增加的程度。我们在Sentinel-2时间序列图像上进行的实验比较了供应商与两种最先进的半监视域适应技术和四个基线模型。我们表明,在两个不同的源目标域上,配对率均优于所有其他方法,以提供所有其他标记的目标数据。实际上,更困难的目标域上的结果表明,源工的起始准确性(当没有标记的目标数据可用时),74.2%,大于在20,000个标记的目标实例上训练的次数最先进的方法。
Land cover maps are a vital input variable to many types of environmental research and management. While they can be produced automatically by machine learning techniques, these techniques require substantial training data to achieve high levels of accuracy, which are not always available. One technique researchers use when labelled training data are scarce is domain adaptation (DA) -- where data from an alternate region, known as the source domain, are used to train a classifier and this model is adapted to map the study region, or target domain. The scenario we address in this paper is known as semi-supervised DA, where some labelled samples are available in the target domain. In this paper we present Sourcerer, a Bayesian-inspired, deep learning-based, semi-supervised DA technique for producing land cover maps from SITS data. The technique takes a convolutional neural network trained on a source domain and then trains further on the available target domain with a novel regularizer applied to the model weights. The regularizer adjusts the degree to which the model is modified to fit the target data, limiting the degree of change when the target data are few in number and increasing it as target data quantity increases. Our experiments on Sentinel-2 time series images compare Sourcerer with two state-of-the-art semi-supervised domain adaptation techniques and four baseline models. We show that on two different source-target domain pairings Sourcerer outperforms all other methods for any quantity of labelled target data available. In fact, the results on the more difficult target domain show that the starting accuracy of Sourcerer (when no labelled target data are available), 74.2%, is greater than the next-best state-of-the-art method trained on 20,000 labelled target instances.