论文标题

运算数据模型

The OpenCitations Data Model

论文作者

Daquino, Marilena, Peroni, Silvio, Shotton, David, Colavizza, Giovanni, Ghavimi, Behnam, Lauscher, Anne, Mayr, Philipp, Romanello, Matteo, Zumstein, Philipp

论文摘要

目前,各种模式和本体学用于书目实体和引文的机器可读描述。这种多样性以及与不同细微差别的相同本体术语的重复使用会产生数据不一致。采用单个数据模型将有助于数据集成任务,而不论数据供应商或上下文应用程序如何。在本文中,我们介绍了使用语义Web Technologies开发的,用于描述书目实体和引用的通用数据模型Opencitation数据模型(OCDM)。我们还根据本体评估实践,提及OCDM的现有用户,并讨论OCDM在更广泛的开放科学社区中的使用和影响评估OCDM的有效可重复性。

A variety of schemas and ontologies are currently used for the machine-readable description of bibliographic entities and citations. This diversity, and the reuse of the same ontology terms with different nuances, generates inconsistencies in data. Adoption of a single data model would facilitate data integration tasks regardless of the data supplier or context application. In this paper we present the OpenCitations Data Model (OCDM), a generic data model for describing bibliographic entities and citations, developed using Semantic Web technologies. We also evaluate the effective reusability of OCDM according to ontology evaluation practices, mention existing users of OCDM, and discuss the use and impact of OCDM in the wider open science community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源