论文标题

关于电弧传输图的固定性

On fixity of arc-transitive graphs

论文作者

Lehner, Florian, Potocnik, Primoz, Spiga, Pablo

论文摘要

置换组的相对固定性是该组的非平凡元素固定的点的最大比例,图形的相对固定性是其自动形态组的相对固定性,被视为图形基因的置换组。我们在本文中证明,随着顶点的数量增长到无穷大,固定价的$ 2 $ -ARC传递图的相对固定性往往$ 0 $。我们证明了固定质量价的ARC传递图的结果相同,更普遍地,对于任何类别的ARC传输本地 - $ L $图形,其中$ l $是固定的准图形驱动式置换组。

The relative fixity of a permutation group is the maximum proportion of the points fixed by a non-trivial element of the group and the relative fixity of a graph is the relative fixity of its automorphism group, viewed as a permutation group on the vertex-set of the graph. We prove in this paper that the relative fixity of connected $2$-arc-transitive graphs of a fixed valence tends to $0$ as the number of vertices grows to infinity. We prove the same result for the class of arc-transitive graphs of a fixed prime valence, and more generally, for any class of arc-transitive locally-$L$ graphs, where $L$ is a fixed quasiprimitive graph-restrictive permutation group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源