论文标题
二维电子系统中的量子厅效应:一种全球方法
Quantum Hall effects in two-dimensional electron systems: A global approach
论文作者
论文摘要
在过去的二十年中,有关量子霍尔效应(QHE)的所有实验结果,即,在整数(IQHE)(IQHE)或恒定H/E2的分数(FQHE)值观察到半导体杂质结构(QWS)中的量子孔。但是,最近,由于观察到石墨烯和拓扑绝缘子的完全相似作用,对重新审视这些现象的重新兴趣引起了人们的重新兴趣。在本文中,我们展示了一种使用相同的理论框架包含所有这些QHS的方法,这既需要Hall效应Plateaux和Shubnikov-de Haas(SDH)振荡。此外,该模型还可以分析两种现象,不仅是磁场的函数,而且还可以分析栅极电压。更具体地说,鉴于方法,任何二维电子系统(2DES)中的FQHE似乎是涉及的静电相互作用的每个Landau水平变性的影响,并且由于涉及的静电相互作用,并以三个整数数字(n,p,q)的一组(n,p,q)(n,p,q)(n,p,q)的特征也明确。
Up to almost the last two decades all the experimental results concerning the quantum Hall effect (QHE), i.e., the observation of plateaux at integer (IQHE) or fractional (FQHE) values of the constant h/e2, were related to quantum-wells in semiconductor heterostructures (QWs). However, more recently, a renewed interest in revisiting these phenomena has arisen thanks to the observation of entirely similar effects in graphene and topological insulators. In this paper we show an approach encompassing all these QHEs using the same theoretical frame, entailing both Hall effect plateaux and Shubnikov-de Haas (SdH) oscillations. Moreover, the model also enables the analysis of both phenomena as a function not only of the magnetic field but the gate voltage as well. More specifically, in light of the approach, the FQHE in any two-dimensional electron system (2DES) appears to be an effect of the breaking of the degeneration of every Landau level, n, as a result of the electrostatic interaction involved, and being characterized by the set of three integer numbers (n, p, q), where p and q have clear physical meanings too.