论文标题

用于神经影像数据的多站点规范性建模的等级贝叶斯回归

Hierarchical Bayesian Regression for Multi-Site Normative Modeling of Neuroimaging Data

论文作者

Kia, Seyed Mostafa, Huijsdens, Hester, Dinga, Richard, Wolfers, Thomas, Mennes, Maarten, Andreassen, Ole A., Westlye, Lars T., Beckmann, Christian F., Marquand, Andre F.

论文摘要

临床神经影像学最近目睹了数据可用性的爆炸性增长,这使研究中的异质性引起了人们的关注。规范建模是实现这一目标的新兴统计工具。但是,由于在适当处理令人讨厌的变化方面的困难,由于图像采集设备的可变性,其应用在技术上仍然具有挑战性。在这里,在完全概率的框架中,我们提出了分层贝叶斯回归(HBR)在多站点规范建模中的应用。与广泛使用的方法相比,我们的实验结果证实了HBR在大型多站点神经影像数据上得出更准确的规范范围的优势。这提供了i)学习大型多站点数据的结构和功能大脑测量的规范范围; ii)重新校准并重用局部小数据的学习模型;因此,HBR关闭了将规范建模作为精神障碍诊断和预后的医学工具的技术循环。

Clinical neuroimaging has recently witnessed explosive growth in data availability which brings studying heterogeneity in clinical cohorts to the spotlight. Normative modeling is an emerging statistical tool for achieving this objective. However, its application remains technically challenging due to difficulties in properly dealing with nuisance variation, for example due to variability in image acquisition devices. Here, in a fully probabilistic framework, we propose an application of hierarchical Bayesian regression (HBR) for multi-site normative modeling. Our experimental results confirm the superiority of HBR in deriving more accurate normative ranges on large multi-site neuroimaging data compared to widely used methods. This provides the possibility i) to learn the normative range of structural and functional brain measures on large multi-site data; ii) to recalibrate and reuse the learned model on local small data; therefore, HBR closes the technical loop for applying normative modeling as a medical tool for the diagnosis and prognosis of mental disorders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源