论文标题

匹配度量的原子

Atoms of the matching measure

论文作者

Bencs, Ferenc, Mészáros, András

论文摘要

我们证明,无限顶点连接图的匹配度量没有原子。概括了Salez的结果,我们表明,对于具有均匀界限度的梯形的非无型随机根系图,匹配度量只有有限的许多原子。 KU和Chen证明了Gallai-Edmonds结构定理的类似于有限图的匹配多项式的非零根。我们扩展了无限图的结果。我们还表明,相应的加莱 - 埃德蒙兹分解与零温度单体二聚体模型兼容。

We prove that the matching measure of an infinite vertex-transitive connected graph has no atoms. Generalizing the results of Salez, we show that for an ergodic non-amenable unimodular random rooted graph with uniformly bounded degrees, the matching measure has only finitely many atoms. Ku and Chen proved the analogue of the Gallai-Edmonds structure theorem for non-zero roots of the matching polynomial for finite graphs. We extend their results for infinite graphs. We also show that the corresponding Gallai-Edmonds decomposition is compatible with the zero temperature monomer-dimer model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源