论文标题

在稀疏性下具有许多协变量模型的合成控制的替代方案

An alternative to synthetic control for models with many covariates under sparsity

论文作者

Bléhaut, Marianne, D'Haultfoeuille, Xavier, L'Hour, Jérémy, Tsybakov, Alexandre B.

论文摘要

合成控制方法是一种计量经济学工具,用于评估仅处理一个单位时因果效应。尽管最初旨在评估很少有可用的控制单元的大规模宏观经济变化的影响,但它越来越多地代替了广泛的应用程序中更知名的微观经济学工具,但其在这种情况下的属性尚不清楚。本文介绍了合成控制方法的替代方法,该方法在通常的渐近框架和高维情况下都是开发的。我们提出了平均治疗效应的估计量,该效应具有双重稳定,一致和渐近正常的估计。它也因第一步选择错误而被免疫。我们使用蒙特卡洛模拟和应用于标准和潜在的高维设置的应用来说明这些特性,并与合成控制方法进行比较。

The synthetic control method is a an econometric tool to evaluate causal effects when only one unit is treated. While initially aimed at evaluating the effect of large-scale macroeconomic changes with very few available control units, it has increasingly been used in place of more well-known microeconometric tools in a broad range of applications, but its properties in this context are unknown. This paper introduces an alternative to the synthetic control method, which is developed both in the usual asymptotic framework and in the high-dimensional scenario. We propose an estimator of average treatment effect that is doubly robust, consistent and asymptotically normal. It is also immunized against first-step selection mistakes. We illustrate these properties using Monte Carlo simulations and applications to both standard and potentially high-dimensional settings, and offer a comparison with the synthetic control method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源