论文标题

5D中的更高形式的对称性

Higher-Form Symmetries in 5d

论文作者

Morrison, David R., Schafer-Nameki, Sakura, Willett, Brian

论文摘要

我们研究5D量子场理论中的更高形式的对称性,其充电运营商包括Wilson Line和'T Hooft Operators等扩展运营商。我们概述了从野外理论的角度以及从非紧凑型卡拉比Yau三倍的M理论中的几何实现中概述了高格式对称性的标准。提供了从卡拉比YAU的交点数据确定更高形式的对称性的几何标准,我们在包括曲折几何形状在内的众多示例中对其进行了测试。我们进一步检查了高形式的对称性与二元性一致,并且在flop跃迁下是不变的,这将理论与相同的紫外线固定点相关联。我们探讨了M理论的其他压缩中的更高形式对称性的扩展,例如$ g_2 $ - 单体歧管,这些歧管产生4D $ \ MATHCAL {n} = 1 $理论。

We study higher-form symmetries in 5d quantum field theories, whose charged operators include extended operators such as Wilson line and 't Hooft operators. We outline criteria for the existence of higher-form symmetries both from a field theory point of view as well as from the geometric realization in M-theory on non-compact Calabi-Yau threefolds. A geometric criterion for determining the higher-form symmetry from the intersection data of the Calabi-Yau is provided, and we test it in a multitude of examples, including toric geometries. We further check that the higher-form symmetry is consistent with dualities and is invariant under flop transitions, which relate theories with the same UV-fixed point. We explore extensions to higher-form symmetries in other compactifications of M-theory, such as $G_2$-holonomy manifolds, which give rise to 4d $\mathcal{N}=1$ theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源