论文标题
关于与正常子组的共轭类大小相关的图表的规律性
On the regularity of a graph related to conjugacy class sizes of a normal subgroup
论文作者
论文摘要
给定一个有限的组$ g $,带有普通子组$ n $,简单的图$γ_\ textit {g}(\ textit {n})$是一个图形,其顶点为$ | x^g | $,其中$ x \ en $ x \ in {n \ setMinus {z(g)} $ n $ x $ n是$ x^$ n是$ x^ug- $ x $。两个顶点$ | x^g | $和$ | y^g | $如果它们不是共同奖励,则相邻。在本文中,我们证明,如果$γ_g(n)$是连接不完整的常规图,则$ n = p \ times {a} $,其中$ p $是$ p $ -group,对于某些prime $ p $和$ p $和$ a \ leq a \ leq {z(g)} $,以及$ {\ bf z} $ {\ bf z}(n)(n)(n)(n)\ k)
Given a finite group $G$ with a normal subgroup $N$, the simple graph $Γ_\textit{G}( \textit{N} )$ is a graph whose vertices are of the form $|x^G|$, where $x\in{N\setminus{Z(G)}}$, and $x^G$ is the $G$-conjugacy class of $N$ containing the element $x$. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not co-prime. In this article we prove that, if $Γ_G(N)$ is a connected incomplete regular graph, then $N= P \times{A}$ where $P$ is a $p$-group, for some prime $p$ and $A\leq{Z(G)}$, and ${\bf Z}(N)\not = N\cap {\bf Z}(G)$.