论文标题

范围分隔的随机分辨率:配方和应用于二阶Green的功能理论

Range-Separated Stochastic Resolution of Identity: Formulation and Application to Second Order Green's Function Theory

论文作者

Dou, Wenjie, Chen, Ming, Takeshita, Tyler Y., Baer, Roi, Neuhauser, Daniel, Rabani, Eran

论文摘要

我们为$ 4 $ index电子排斥积分的身份方法开发了范围分隔的随机分辨率,其中使用确定性分辨率来处理较大的术语(高于预定义的阈值),其余术语则使用身份的随机分辨率来处理。该方法是在二阶绿色功能形式主义中实现的,并具有改进的$ O(n^3)$缩放,其大小为基集$ n $。此外,与完整的随机版本相比,范围分离的方法大大降低了统计误差({\ it J.Chem。Phys。} {\ BF 151},044144(2019)),从而导致地面的计算加速和近两个幅度的激发状态能量,以示例为水。

We develop a range-separated stochastic resolution of identity approach for the $4$-index electron repulsion integrals, where the larger terms (above a predefined threshold) are treated using a deterministic resolution of identity and the remaining terms are treated using a stochastic resolution of identity. The approach is implemented within a second-order Greens function formalism with an improved $O(N^3)$ scaling with the size of the basis set, $N$. Moreover, the range-separated approach greatly reduces the statistical error compared to the full stochastic version ({\it J. Chem. Phys.} {\bf 151}, 044144 (2019)), resulting in computational speedups of ground and excited state energies of nearly two orders of magnitude, as demonstrated for hydrogen dimer chains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源