论文标题

良好理想和Apéry套装的补充分区

Partition of complement of good ideals and Apéry sets

论文作者

Guerrieri, Lorenzo, Maugeri, Nicola, Micale, Vincenzo

论文摘要

良好的半群形成了$ \ mathbb {n}^d $的一类亚monoi,其中包含曲线奇点的值。在本文中,我们描述了良好的半群理想补充的分区,作为主要应用程序的描述,对良好的半群岛的Apéry组描述。这将概括为任何$ d \ geq 2 $最近的d'Anna,Guerrieri和Micale的结果,这些结果在$ d = 2 $的情况下得到了证明,仅针对最小的非零元素的标准apéry设置。还提供了一些描述$ \ mathbb {n}^d $的良好半群的新结果。

Good semigroups form a class of submonoids of $\mathbb{N}^d$ containing the value semigroups of curve singularities. In this article, we describe a partition of the complements of good semigroup ideals, having as main application the description of the Apéry sets of good semigroups. This generalizes to any $d \geq 2$ the results of a recent paper of D'Anna, Guerrieri and Micale, which are proved in the case $d=2$ and only for the standard Apéry set with respect to the smallest nonzero element. Several new results describing good semigroups in $\mathbb{N}^d$ are also provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源