论文标题
从侵袭性理论中的双重式电荷解决方案的双副本中的广义施瓦茨柴尔德度量
Generalised Schwarzschild metric from double copy of point-like charge solution in Born-Infeld theory
论文作者
论文摘要
我们讨论了经典双复制程序的可能应用,以从$α'$校正的库仑解决方案的开放字符串类似物开始构建Schwarzschild公制的概括。后者通过出生式攻击动作的点状电荷解近似,该方案代表了当田间强度衍生词很小时,在极限中,在极限的开放式琴弦有效作用。出生的污染解决方案的定期电场在原点附近是恒定的,这表明在开放式弦乐有效作用中,从衍生术语中校正可能很小。通过从出生的污染解决方案中获得的双复制构造获得的schwarschild度量的概括看起来非单位,但相应的曲率不变性仍然爆炸为$ r = 0 $。我们讨论了这种奇异性的起源,并评论可能的概括。
We discuss possible application of classical double copy procedure to construction of a generalisation of the Schwarzschild metric starting from an $α'$-corrected open string analogue of Coulomb solution. The latter is approximated by a point-like charge solution of the Born-Infeld action, which represents the open string effective action for an abelian vector field in the limit when derivatives of the field strength are small. The Born-Infeld solution has a regular electric field which is constant near the origin, suggesting that corrections from derivative terms in the open string effective action may be small there. The generalization of the Schwarschild metric obtained by the double copy construction from the Born-Infeld solution looks non-singular but the corresponding curvature invariants still blow up at $r=0$. We discuss the origin of this singularity and comment on possible generalisations.