论文标题
一种相位校准的概率方法:I。源结构对边缘拟合的影响
A probabilistic approach to phase calibration: I. Effects of source structure on fringe-fitting
论文作者
论文摘要
我们提出了一个概率框架,用于在很长的基线干涉法(VLBI)观察中同时估算源结构和附带拟合参数。作为第一步,我们通过分析在基线依赖性热噪声的情况下,通过分析230 GHz的各种几何源模型的合成短期事件望远镜(EHT)观察结果。我们在不同源模型之间执行贝叶斯参数估计和模型选择,以获得可靠的不确定性估计和各种源和边缘拟合相关模型参数之间的相关性。我们还将贝叶斯后代与使用广泛使用的VLBI数据还原套件(例如Casa和AIPS)获得的贝叶斯后期相比,通过带有不同噪声实现的每个源模型的200个蒙特卡洛模拟,以获得最大A Posteriori(MAP)估计值的分布。我们发现,在存在分辨的不对称源结构和给定阵列几何形状的情况下,使用点源模型的边缘拟合的传统实践在估计的相位残差中产生可观的偏移,可能会偏置或限制用于自我计算的起始模型的动态范围。同时在校准过程中以正式的不确定性估算校准过程的早期源结构,提高了边缘拟合的精度和准确性,并确定了可用数据的潜力,尤其是在几乎没有先前的信息时。我们还注意到,这种方法在特定科学案例中的天文统计和地理位置的潜在应用,以及对更复杂源分布的计算性能和分析的计划改进。
We propose a probabilistic framework for performing simultaneous estimation of source structure and fringe-fitting parameters in Very Long Baseline Interferometry (VLBI) observations. As a first step, we demonstrate this technique through the analysis of synthetic short-duration Event Horizon Telescope (EHT) observations of various geometric source models at 230 GHz, in the presence of baseline-dependent thermal noise. We perform Bayesian parameter estimation and model selection between the different source models to obtain reliable uncertainty estimates and correlations between various source and fringe-fitting related model parameters. We also compare the Bayesian posteriors with those obtained using widely-used VLBI data reduction packages such as CASA and AIPS, by fringe-fitting 200 Monte Carlo simulations of each source model with different noise realisations, to obtain distributions of the Maximum A Posteriori (MAP) estimates. We find that, in the presence of resolved asymmetric source structure and a given array geometry, the traditional practice of fringe-fitting with a point source model yields appreciable offsets in the estimated phase residuals, potentially biasing or limiting the dynamic range of the starting model used for self-calibration. Simultaneously estimating the source structure earlier in the calibration process with formal uncertainties improves the precision and accuracy of fringe-fitting and establishes the potential of the available data especially when there is little prior information. We also note the potential applications of this method to astrometry and geodesy for specific science cases and the planned improvements to the computational performance and analyses of more complex source distributions.