论文标题
通过深入的强化学习对全球国家准备进行分类
Classifying global state preparation via deep reinforcement learning
论文作者
论文摘要
量子信息处理通常需要准备任意量子状态,例如Bloch球上的所有状态为两级系统。尽管数值优化可以准备单个目标状态,但他们缺乏找到在更复杂的量子系统中适用于大量状态的通用解决方案的能力。在这里,我们通过准备一组具有深厚的增强学习的状态来证明全球量子控制。协议使用神经网络表示,该神经网络会自动将协议分为类似类型,这对于查找协议类别和提取物理见解可能很有用。作为应用,我们在复杂的多级氮呈现中心中生成了电子自旋的任意叠加态,从而揭示了以特定制备时间标准为特征的协议类别。我们的方法可以帮助改善对近期量子计算机,量子传感设备和量子模拟的控制。
Quantum information processing often requires the preparation of arbitrary quantum states, such as all the states on the Bloch sphere for two-level systems. While numerical optimization can prepare individual target states, they lack the ability to find general solutions that work for a large class of states in more complicated quantum systems. Here, we demonstrate global quantum control by preparing a continuous set of states with deep reinforcement learning. The protocols are represented using neural networks, which automatically groups the protocols into similar types, which could be useful for finding classes of protocols and extracting physical insights. As application, we generate arbitrary superposition states for the electron spin in complex multi-level nitrogen-vacancy centers, revealing classes of protocols characterized by specific preparation timescales. Our method could help improve control of near-term quantum computers, quantum sensing devices and quantum simulations.