论文标题
保护神经网络模型的提取
A Protection against the Extraction of Neural Network Models
论文作者
论文摘要
给定Oracle访问神经网络(NN),可以提取其基础模型。在这里,我们通过添加寄生层来引入保护,从而使基础NN的预测大多保持不变,同时使反向工程的任务复杂化。我们的对策依赖于与卷积NN近似嘈杂的身份映射。我们解释了为什么引入新的寄生层会使攻击复杂化。我们报告了有关受保护NN的性能和准确性的实验。
Given oracle access to a Neural Network (NN), it is possible to extract its underlying model. We here introduce a protection by adding parasitic layers which keep the underlying NN's predictions mostly unchanged while complexifying the task of reverse-engineering. Our countermeasure relies on approximating a noisy identity mapping with a Convolutional NN. We explain why the introduction of new parasitic layers complexifies the attacks. We report experiments regarding the performance and the accuracy of the protected NN.