论文标题

宇宙学模拟星系的多相ISM中的压力平衡

Pressure balance in the multiphase ISM of cosmologically simulated disk galaxies

论文作者

Gurvich, Alexander B., Faucher-Giguère, Claude-André, Richings, Alexander J., Hopkins, Philip F., Grudić, Michael Y., Hafen, Zachary, Wellons, Sarah, Stern, Jonathan, Quataert, Eliot, Chan, T. K., Orr, Matthew E., Kereš, Dušan, Wetzel, Andrew, Hayward, Christopher C., Loebman, Sarah R., Murray, Norman

论文摘要

压力平衡在星际介质(ISM)的模型中起着核心作用,但是在现实的多相ISM中是否以及如何实现压力平衡尚不清楚。我们使用一组对银河系磁盘星系的FIRE-2宇宙学缩放模拟来解决这个问题,其中多相ISM是由重力,冷却和出色的反馈来自吻的。我们分析了重力如何确定垂直压力轮廓以及如何在不同相和组件之间分配总ISM压力(热,分散/湍流和散装流)。我们表明,平均而言,与以前的更理想化的模拟一致,总ISM压力平衡了上覆的气体的重量。垂直压力平衡的偏差会随着半乳酸半径的增加而增加,并且平均量表减小。不同的阶段在粗糙的总压力平衡中相互平衡,但由于在冷和温暖的相中的动力学支撑,偏向于热压平衡的偏差很大,这占主导地位附近的总压力。在几个磁盘尺度上,散装流量(例如流入和喷泉)很重要,而来自热气的热压在较大的高度下占主导地位。总体而言,总平面压力是由磁盘气体的重量很好地预测的,我们表明它也随恒星形成速率表面密度(SIGMA_SFR)线性缩放。这些结果支持这样的观点:kennicutt-schmidt关系会因为Sigma_SFR和气体表面密度(SIGMA_G)通过ISM中平面压力连接而出现。

Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disk galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyze how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the midplane. Bulk flows (e.g., inflows and fountains) are important at a few disk scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total midplane pressure is well-predicted by the weight of the disk gas, and we show that it also scales linearly with the star formation rate surface density (Sigma_SFR). These results support the notion that the Kennicutt-Schmidt relation arises because Sigma_SFR and the gas surface density (Sigma_g) are connected via the ISM midplane pressure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源