论文标题

对称保护拓扑边缘状态的操作纠缠

Operational Entanglement of Symmetry-Protected Topological Edge States

论文作者

Monkman, K., Sirker, J.

论文摘要

我们使用纠缠粒子数的超选择的纠缠度量来研究受对称保护的拓扑边缘状态的非本地特性。以半填充的M-Leg Su-Schrieffer-Heeger(SSH)梯子为例,我们表明,从边界中提取的拓扑特性和可从边界中提取的操作纠缠密切相关。具有至少两个填充边缘状态的拓扑阶段有可能实现真正的,非双向的多体纠缠,可以将其转移到量子寄存器上。当填充的边缘状态足够定位在用户控制的晶格站点上时,纠缠是可提取的。此外,我们还表明,可以单独从局部颗粒数光谱中推断边缘之间的纠缠开始,并提出一种实验方案,以研究贝尔的不平等现象的破坏。

We use an entanglement measure that respects the superselection of particle number to study the non-local properties of symmetry-protected topological edge states. Considering half-filled M-leg Su-Schrieffer-Heeger (SSH) ladders as an example, we show that the topological properties and the operational entanglement extractable from the boundaries are intimately connected. Topological phases with at least two filled edge states have the potential to realize genuine, non-bipartite, many-body entanglement which can be transferred to a quantum register. The entanglement is extractable when the filled edge states are sufficiently localized on the lattice sites controlled by the users. We show, furthermore, that the onset of entanglement between the edges can be inferred from local particle number spectroscopy alone and present an experimental protocol to study the breaking of Bell's inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源