论文标题
自动驾驶汽车的低分辨率激光雷德点云
Road Segmentation on low resolution Lidar point clouds for autonomous vehicles
论文作者
论文摘要
在自主驾驶的上下文中,用于感知任务的点云数据集通常依赖于高分辨率的64层光检测和范围(LIDAR)扫描仪。它们在现实世界中使用16/32层激光痛的现实自主驾驶传感器体系结构很昂贵。我们评估了基于子采样图像的密度云对道路分割任务准确性的影响。在我们的实验中,低分辨率16/32层激光点云是通过对原始的64层数据进行了采样来模拟的,以便随后转换到点云的鸟眼视图(BEV)和SphericalView(SV)表示中的特征映射。我们将LIDAR的球形坐标作为现有LODNN体系结构的输入通道介绍了本地正常矢量的用法。我们证明,这种局部正常特征与经典特征不仅可以改善完整分辨率点云上二进制道路分割的性能,而且还降低了与单独使用古典特征相比,在次采样密集点云时,对准确性的负面影响。我们通过两个数据集上的几个实验评估了我们的方法:Kitti Road-Reagementation基准和最近发布的语义Kitti数据集。
Point cloud datasets for perception tasks in the context of autonomous driving often rely on high resolution 64-layer Light Detection and Ranging (LIDAR) scanners. They are expensive to deploy on real-world autonomous driving sensor architectures which usually employ 16/32 layer LIDARs. We evaluate the effect of subsampling image based representations of dense point clouds on the accuracy of the road segmentation task. In our experiments the low resolution 16/32 layer LIDAR point clouds are simulated by subsampling the original 64 layer data, for subsequent transformation in to a feature map in the Bird-Eye-View (BEV) and SphericalView (SV) representations of the point cloud. We introduce the usage of the local normal vector with the LIDAR's spherical coordinates as an input channel to existing LoDNN architectures. We demonstrate that this local normal feature in conjunction with classical features not only improves performance for binary road segmentation on full resolution point clouds, but it also reduces the negative impact on the accuracy when subsampling dense point clouds as compared to the usage of classical features alone. We assess our method with several experiments on two datasets: KITTI Road-segmentation benchmark and the recently released Semantic KITTI dataset.