论文标题

热点和其他极端点的位置

The location of hot spots and other extremal points

论文作者

Magnanini, Rolando, Poggesi, Giorgio

论文摘要

在欧几里得空间的一个域中,我们从椭圆形和抛物线方程溶液的全局最大点的距离下估计,具有均匀的dirichlet边界值。作为参考案例,我们首先考虑条形的扭转刚度函数,振动膜的第一种模式以及在边界处接地至零的热导体的温度。我们的主要结果是针对平均凸边界的域提出的,并将该距离与相关域的Inradius进行比较。 对于扭转刚度函数,获得的界限仅取决于空间维度。还考虑了边界的更一般的情况,即均不是平均凸的。但是,估计值还取决于一些几何量,例如直径和最大的外部示波球的半径到相关域,或边界平均曲率的最小值。 同样在第一个模式的情况下,相关界限仅取决于空间维度。此外,它在很大程度上改善了第一作者和合着者对凸形域获得的早期估计。与温度相关的结合取决于时间和温度的初始分布。这样的约束与在固定情况下获得的基本上是一致的。 所采用的方法基于基本论证和现有文献,可以扩展到需要学流方程,各向同性和各向异性以及某些半线性方程的其他情况。

In a domain of the Euclidean space, we estimate from below the distance to the boundary of global maximum points of solutions of elliptic and parabolic equations with homogeneous Dirichlet boundary values. As reference cases, we first consider the torsional rigidity function of a bar, the first mode of a vibrating membrane, and the temperature of a heat conductor grounded to zero at the boundary. Our main results are presented for domains with a mean convex boundary and compare that distance to the inradius of the relevant domain. For the torsional rigidity function, the obtained bound only depends on the space dimension. The more general case of a boundary which is not mean convex is also considered. However, the estimates also depend on some geometrical quantities such as the diameter and the radius of the largest exterior osculating ball to the relevant domain, or the minimum of the mean curvature of the boundary. Also in the case of the first mode, the relevant bound only depends on the space dimension. Moreover, it largely improves on an earlier estimate obtained by the first author and co-authors, for convex domains. The bound related to the temperature depends on time and the initial distribution of temperature. Such a bound is substantially consistent with what one obtains in the stationary situation. The methods employed are based on elementary arguments and existing literature, and can be extended to other situations that entail quasilinear equations, isotropic and anisotropic, and also certain classes of semilinear equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源