论文标题

多源和多相CT成像数据的共同构成和适应性分割:关于病理肝脏和病变分割的研究

Co-Heterogeneous and Adaptive Segmentation from Multi-Source and Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion Segmentation

论文作者

Raju, Ashwin, Cheng, Chi-Tung, Huo, Yunakai, Cai, Jinzheng, Huang, Junzhou, Xiao, Jing, Lu, Le, Liao, ChienHuang, Harrison, Adam P

论文摘要

在医学成像中,对当前公开可用和完全注销的数据集培训的器官/病理分割模型通常不能很好地说明在实际环境中遇到的异质方式,阶段,病理和临床场景。另一方面,许多现代临床中心存储了大量未标记的患者成像扫描。在这项工作中,我们提出了一种新颖的分割策略,共生和适应性分割(Chase),该策略仅需要一小群单相成像数据的群,以适应任何可能具有新的临床临床方案和病理学的异源多源性多相数据。为此,我们提出了一个多功能框架,该框架融合了基于外观的半超音节,基于掩模的对抗域的适应性和伪标记。我们还引入了共同培训,这是共同训练和异态态度学习的新型整合。我们已经使用了多相计算机断层扫描(CT)成像研究(1147例患者和4577 3D体积)的临床全面且具有挑战性的数据集评估了追逐。与以前的最先进的基线相比,Chase可以进一步提高病理肝面膜骰子骰子系数,范围为$ 4.2 \%\ sim 9.4 \%$ $,具体取决于相组合:从$ 84.6 \%\%\%\%\%\%\%$ to $ 94.0 \%\%\%\%\%\%\%\%\%$ $ \%$ $。

In medical imaging, organ/pathology segmentation models trained on current publicly available and fully-annotated datasets usually do not well-represent the heterogeneous modalities, phases, pathologies, and clinical scenarios encountered in real environments. On the other hand, there are tremendous amounts of unlabelled patient imaging scans stored by many modern clinical centers. In this work, we present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe), which only requires a small labeled cohort of single phase imaging data to adapt to any unlabeled cohort of heterogenous multi-phase data with possibly new clinical scenarios and pathologies. To do this, we propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling. We also introduce co-heterogeneous training, which is a novel integration of co-training and hetero modality learning. We have evaluated CHASe using a clinically comprehensive and challenging dataset of multi-phase computed tomography (CT) imaging studies (1147 patients and 4577 3D volumes). Compared to previous state-of-the-art baselines, CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2\% \sim 9.4\%$, depending on the phase combinations: e.g., from $84.6\%$ to $94.0\%$ on non-contrast CTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源