论文标题

校园微电网中基于电池的能量优化的峰值预测

Peak Forecasting for Battery-based Energy Optimizations in Campus Microgrids

论文作者

Soman, Akhil, Trivedi, Amee, Irwin, David, Kosanovic, Beka, McDaniel, Benjamin, Shenoy, Prashant

论文摘要

基于电池的能量存储已成为一种用于各种网格能源优化的促成技术,例如剃须和成本套利。电池驱动的峰值优化的关键组成部分是峰值预测,这预测了一天中需求最大的时间。尽管对负载预测进行了重要的先前工作,但我们认为,预测个人消费者或微网格的需求峰值的时期的问题比在网格量表上预测负载更具挑战性。我们提出了一个基于深度学习的新模型,以预测最高和最低需求的每天的K小时。我们使用来自156座建筑物的实际微网格的两年痕迹来评估我们的方法,并表明它的表现优于最先进的预测技术,该预测技术适合于峰值预测,这一预测率为11-32%。当用于基于电池的峰值剃须时,我们的型号每年可节省496,320美元,用于该微电网的4 MWHR电池。

Battery-based energy storage has emerged as an enabling technology for a variety of grid energy optimizations, such as peak shaving and cost arbitrage. A key component of battery-driven peak shaving optimizations is peak forecasting, which predicts the hours of the day that see the greatest demand. While there has been significant prior work on load forecasting, we argue that the problem of predicting periods where the demand peaks for individual consumers or micro-grids is more challenging than forecasting load at a grid scale. We propose a new model for peak forecasting, based on deep learning, that predicts the k hours of each day with the highest and lowest demand. We evaluate our approach using a two year trace from a real micro-grid of 156 buildings and show that it outperforms the state of the art load forecasting techniques adapted for peak predictions by 11-32%. When used for battery-based peak shaving, our model yields annual savings of $496,320 for a 4 MWhr battery for this micro-grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源