论文标题

运动图像的情绪激动EEG分类

Emotion-robust EEG Classification for Motor Imagery

论文作者

Moeed, Abdul

论文摘要

大脑计算机界面(BCIS)中的发展正在通过在辅助系统中使用来赋予患有严重身体痛苦的人。实现此目的的常见方法是通过运动图像(MI),该方法将大脑信号映射到某些命令中代码。脑电图(EEG)是由于无创侵入性记录脑信号数据而首选的。尽管具有潜在的效用,但Mi-BCI系统仍局限于研究实验室。原因的主要原因是这种系统缺乏鲁棒性。正如2016年Cybathlon期间的两个团队所假设的那样,该系统脆弱性的特定来源是受试者情绪唤醒状态的急剧变化。这项工作旨在使Mi-BCI系统能够弹性,以实现这种情感扰动。为此,在记录脑电图数据之前,受试者会暴露于高和低唤醒的虚拟现实(VR)环境。 Covid-19的出现迫使我们修改我们的方法论。我们选择将机器学习算法分类为情绪唤醒,而是选择分类为每个州代理的主题。此外,为每个受试者而不是每个唤醒状态训练MI模型。由于使用Mi-BCI的培训受试者可能是一个艰巨而耗时的过程,因此降低了这种可变性并提高鲁棒性可以大大加速由BCI支持的辅助技术的接受和采用。

Developments in Brain Computer Interfaces (BCIs) are empowering those with severe physical afflictions through their use in assistive systems. Common methods of achieving this is via Motor Imagery (MI), which maps brain signals to code for certain commands. Electroencephalogram (EEG) is preferred for recording brain signal data on account of it being non-invasive. Despite their potential utility, MI-BCI systems are yet confined to research labs. A major cause for this is lack of robustness of such systems. As hypothesized by two teams during Cybathlon 2016, a particular source of the system's vulnerability is the sharp change in the subject's state of emotional arousal. This work aims towards making MI-BCI systems resilient to such emotional perturbations. To do so, subjects are exposed to high and low arousal-inducing virtual reality (VR) environments before recording EEG data. The advent of COVID-19 compelled us to modify our methodology. Instead of training machine learning algorithms to classify emotional arousal, we opt for classifying subjects that serve as proxy for each state. Additionally, MI models are trained for each subject instead of each arousal state. As training subjects to use MI-BCI can be an arduous and time-consuming process, reducing this variability and increasing robustness can considerably accelerate the acceptance and adoption of assistive technologies powered by BCI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源