论文标题
在随机规则图中扩展安德森过渡
Scaling up the Anderson transition in random-regular graphs
论文作者
论文摘要
我们研究了与随机规范图的连通性的晶格中的安德森过渡。我们的结果表明,整个过渡过程中分形维度是连续的,但是在其衍生物中发生了不连续性,这意味着金属在安德森过渡附近的非刚性性。关键指数$ν= 1.00 \ pm0.02 $和关键障碍$ W = 18.2 \ pm 0.1 $是通过缩放方法找到的。我们的数据支持相关高斯合奏的预测仅在零疾病下恢复。
We study the Anderson transition in lattices with the connectivity of a random-regular graph. Our results indicate that fractal dimensions are continuous across the transition, but a discontinuity occurs in their derivatives, implying the non-ergodicity of the metal near the Anderson transition. A critical exponent $ν= 1.00 \pm0.02$ and critical disorder $W= 18.2\pm 0.1$ are found via a scaling approach. Our data support that the predictions of the relevant Gaussian Ensemble are only recovered at zero disorder.