论文标题
等效关系和有效的跳跃操作员的可计算可降低性
Computable reducibility of equivalence relations and an effective jump operator
论文作者
论文摘要
我们介绍了可计算的FS-JUMP,这是对经典弗里德曼的类似物 - 史丹利在自然数量上的等价关系的背景下跳跃。我们证明,相对于可降低性,可计算的FS跳跃是适当的。然后,我们研究可计算的FS-跳动对计算列出的等效关系(CEER)的影响。
We introduce the computable FS-jump, an analog of the classical Friedman--Stanley jump in the context of equivalence relations on the natural numbers. We prove that the computable FS-jump is proper with respect to computable reducibility. We then study the effect of the computable FS-jump on computably enumerable equivalence relations (ceers).