论文标题
不确定时间范围
Non-concave expected utility optimization with uncertain time horizon
论文作者
论文摘要
我们考虑了一个预期的效用最大化问题,其中效用函数不一定是凹的,并且时间范围尚不确定。我们为整个金融市场中的一般非cove公用事业功能建立了必要和充分的条件。我们表明,公用事业功能的一般凹面方法可以处理非障碍,同时在时间范围是关于金融市场过滤的停止时间时仍然适用的,当时间范围独立于金融风险时,会导致亚临时性,并且避免直接适用。对于后一种情况,我们建议基于动态编程原理的递归程序。我们通过在随机时间范围内进行最佳投资问题的多周期数值分析来说明我们的发现。我们观察到,在某些和不确定的随机时间范围内,非concave投资组合的分布与右尾部长右链,这表明投资者期望经常会带来小少量损失和投资的巨大收益。虽然(某些)平均时间范围的投资组合在过早停止日期是单峰的,但随机时间范围的投资组合是多模式分布式,这使投资者在本地最大化器之间具有一定的灵活性,具体取决于市场性能。具有不同高度的多个峰的多模式结构可以通过凹面过程来解释,而时间范围的分布对模式之间的幅度有重大影响。
We consider an expected utility maximization problem where the utility function is not necessarily concave and the time horizon is uncertain. We establish a necessary and sufficient condition for the optimality for general non-concave utility function in a complete financial market. We show that the general concavification approach of the utility function to deal with non-concavity, while being still applicable when the time horizon is a stopping time with respect to the financial market filtration, leads to sub-optimality when the time horizon is independent of the financial risk, and hence can not be directly applied. For the latter case, we suggest a recursive procedure which is based on the dynamic programming principle. We illustrate our findings by carrying out a multi-period numerical analysis for optimal investment problem under a convex option compensation scheme with random time horizon. We observe that the distribution of the non-concave portfolio in both certain and uncertain random time horizon is right-skewed with a long right tail, indicating that the investor expects frequent small losses and a few large gains from the investment. While the (certain) average time horizon portfolio at a premature stopping date is unimodal, the random time horizon portfolio is multimodal distributed which provides the investor a certain flexibility of switching between the local maximizers, depending on the market performance. The multimodal structure with multiple peaks of different heights can be explained by the concavification procedure, whereas the distribution of the time horizon has significant impact on the amplitude between the modes.