论文标题

在螺旋边缘的驱动Rashba杂质上进行反向散射

Backscattering off a driven Rashba impurity at the helical edge

论文作者

Privitera, Lorenzo, Ziani, Niccolò Traverso, Safi, Inès, Trauzettel, Björn

论文摘要

自由度的自由度对于理解和利用二维拓扑绝缘子边缘的特定特性至关重要。在没有超导性和磁性的情况下,Rashba耦合是该系统中最相关的单个粒子扰动。由于Rashba耦合不会打破时间逆转对称性,因此仅当包括不保存单个粒子能的过程时,才能看到其对传输特性的影响。此类过程的范式示例是电子电子相互作用和时间依赖的外部驱动器。在存在电子 - 电子相互作用的情况下,我们分析了螺旋边缘上定期驱动的Rashba杂质的影响。相互作用是通过琼脂化处理的,并且在杂质强度下,对反向散射电流的计算最高为二阶。我们表明,反向散射电流在驱动频率上是非单调的。该特性是Rashba杂质的指纹,在螺旋液体中磁性杂质的情况下不存在。此外,非单调行为使我们能够将反向散射电流直接连接到Luttinger参数$ K $,从而编码电子电子相互作用的强度。

The spin degree of freedom is crucial for both understanding and exploiting the particular properties of the edges of two-dimensional topological insulators. In the absence of superconductivity and magnetism, Rashba coupling is the most relevant single particle perturbation in this system. Since Rashba coupling does not break time reversal symmetry, its influence on transport properties is only visible if processes that do not conserve the single particle energy are included. Paradigmatic examples of such processes are electron-electron interactions and time dependent external drivings. We analyze the effects of a periodically driven Rashba impurity at the helical edge, in the presence of electron-electron interactions. Interactions are treated by means of bosonization and the backscattering current is computed perturbatively up to second order in the impurity strength. We show that the backscattering current is non-monotonic in the driving frequency. This property is a fingerprint of the Rashba impurity, being absent in the case of a magnetic impurity in the helical liquid. Moreover, the non-monotonic behaviour allows us to directly link the backscattering current to the Luttinger parameter $K$, encoding the strength of electron-electron interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源