论文标题
在Galois对称性上的整体融合类别的角色表
On the Galois symmetries for the character table of an integral fusion category
论文作者
论文摘要
在本文中,我们表明,具有理性结构常数的整体融合类别承认其角色表的Galois组给出了自然的对称性。我们还概括了有限群体代表理论的伯恩赛德的众所周知的结果。更确切地说,我们表明,与弱积分融合类别的字符表中的非可逆对象相对应的任何行都包含零条目。
In this paper we show that integral fusion categories with rational structure constants admit a natural group of symmetries given by the Galois group of their character tables. We also generalize a well known result of Burnside from representation theory of finite groups. More precisely, we show that any row corresponding to a non invertible object in the character table of a weakly integral fusion category contains a zero entry.