论文标题

带量子傅里叶变换采样器的量子自学习蒙特卡洛

Quantum self-learning Monte Carlo with quantum Fourier transform sampler

论文作者

Endo, Katsuhiro, Nakamura, Taichi, Fujii, Keisuke, Yamamoto, Naoki

论文摘要

自我学习的大都市杂货算法是一种强大的蒙特卡洛方法,借助机器学习,可以自适应地生成易于样本的概率分布,以近似给定的难以示例分布。本文提供了一种新的自学习蒙特卡洛方法,该方法利用量子计算机输出提案分布。特别是,我们根据量子傅立叶变换电路显示了该一般方案的新型子类。该采样器在经典上可以模拟,而比常规方法具有一定的优势。某些数值模拟证明了该“量子启发”算法的性能。

The self-learning Metropolis-Hastings algorithm is a powerful Monte Carlo method that, with the help of machine learning, adaptively generates an easy-to-sample probability distribution for approximating a given hard-to-sample distribution. This paper provides a new self-learning Monte Carlo method that utilizes a quantum computer to output a proposal distribution. In particular, we show a novel subclass of this general scheme based on the quantum Fourier transform circuit; this sampler is classically simulable while having a certain advantage over conventional methods. The performance of this "quantum inspired" algorithm is demonstrated by some numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源