论文标题
使用人工神经网络进行开环自适应光学技术的波前预测
Wavefront prediction using artificial neural networks for open-loop Adaptive Optics
论文作者
论文摘要
自适应光学(AO)系统控制回路中的延迟可以严重限制性能。在冻结的流动假设下,线性预测控制技术可以克服这一点,但是对于这种参数技术,需要识别和跟踪相关的湍流参数(例如风速)。这可能会使实际实现复杂化并在遇到可变条件时引入稳定问题。在这里,我们使用长期的短期记忆(LSTM)人工神经网络(ANN)提出了非线性波前预测变量,该预测没有对大气的先验知识,因此不需要用户输入。该ANN旨在预测棚屋 - 哈特曼波前传感器(SH-WFS)的开阔波浪前坡度测量,以补偿模拟的$ 7 \ times 7 $单偶联自适应光学(SCAO)系统的单帧延迟,以150 Hz运行。我们描述了LSTM ANN的训练制度如何影响预测性能,并显示预测变量的性能如何在各种指南恒星大小下变化。我们表明,当风速和方向变化时,预测仍然稳定。然后,我们将方法扩展到更现实的两框延迟系统。对于所有模拟条件,使用LSTM预测变量时,AO系统性能将在所有模拟条件下增强,其预测误差在相同条件下运行的无延迟系统的19.9至40.0 nm RMS,而带宽误差为$ 78.3 \ pm4.4 $ nm rms。
Latency in the control loop of adaptive optics (AO) systems can severely limit performance. Under the frozen flow hypothesis linear predictive control techniques can overcome this, however identification and tracking of relevant turbulent parameters (such as wind speeds) is required for such parametric techniques. This can complicate practical implementations and introduce stability issues when encountering variable conditions. Here we present a nonlinear wavefront predictor using a Long Short-Term Memory (LSTM) artificial neural network (ANN) that assumes no prior knowledge of the atmosphere and thus requires no user input. The ANN is designed to predict the open-loop wavefront slope measurements of a Shack-Hartmann wavefront sensor (SH-WFS) one frame in advance to compensate for a single-frame delay in a simulated $7\times7$ single-conjugate adaptive optics (SCAO) system operating at 150 Hz. We describe how the training regime of the LSTM ANN affects prediction performance and show how the performance of the predictor varies under various guide star magnitudes. We show that the prediction remains stable when both wind speed and direction are varying. We then extend our approach to a more realistic two-frame latency system. AO system performance when using the LSTM predictor is enhanced for all simulated conditions with prediction errors within 19.9 to 40.0 nm RMS of a latency-free system operating under the same conditions compared to a bandwidth error of $78.3\pm4.4$ nm RMS.