论文标题
鲁棒多参数映射的关节总变化
Joint Total Variation ESTATICS for Robust Multi-Parameter Mapping
论文作者
论文摘要
定量磁共振成像(QMRI)得出组织特异性参数 - 例如表观横向松弛速率R2*,纵向弛豫率R1和磁化转移饱和度 - 可以在跨站点和扫描仪进行比较,并携带有关基础微观结构的重要信息。多参数映射(MPM)协议利用具有可变翻转角度的多回波采集来在临床上可接受的扫描时间中提取这些参数。在这种情况下,ESTATICS执行了多个回声系列的联合日志拟合,以提取R2*和多个推断截距,从而提高了运动的鲁棒性并降低了估计器的方差。在本文中,我们以两种方式扩展了此模型:(1)通过在截距和衰减上引入关节总变化(JTV),以及(2)通过得出非线性最大\ emph {a postteriori}估计值。我们通过预测丰富的单人物数据集中的剩余回声来评估所提出的算法。在此验证中,我们优于其他最先进的方法,并表明所提出的方法大大降低了估计地图的方差,而无需引入偏见。
Quantitative magnetic resonance imaging (qMRI) derives tissue-specific parameters -- such as the apparent transverse relaxation rate R2*, the longitudinal relaxation rate R1 and the magnetisation transfer saturation -- that can be compared across sites and scanners and carry important information about the underlying microstructure. The multi-parameter mapping (MPM) protocol takes advantage of multi-echo acquisitions with variable flip angles to extract these parameters in a clinically acceptable scan time. In this context, ESTATICS performs a joint loglinear fit of multiple echo series to extract R2* and multiple extrapolated intercepts, thereby improving robustness to motion and decreasing the variance of the estimators. In this paper, we extend this model in two ways: (1) by introducing a joint total variation (JTV) prior on the intercepts and decay, and (2) by deriving a nonlinear maximum \emph{a posteriori} estimate. We evaluated the proposed algorithm by predicting left-out echoes in a rich single-subject dataset. In this validation, we outperformed other state-of-the-art methods and additionally showed that the proposed approach greatly reduces the variance of the estimated maps, without introducing bias.