论文标题
脑肿瘤分割的不确定性评估度量
Uncertainty Evaluation Metric for Brain Tumour Segmentation
论文作者
论文摘要
在本文中,我们开发了一种旨在评估和对不确定性量化的Brats 2019亚挑战中脑肿瘤子组织分段任务的不确定性度量的度量。该指标的设计为:(1)奖励不确定性度量,其中分配了高置信度以纠正断言,并且分配了不正确的断言较低的置信度,以及(2)惩罚措施,这些措施具有较高的不构件正确断言的百分比。在这里,根据Brats 2019数据集评估的许多流行不确定性度量,探索了度量的组件的工作。
In this paper, we develop a metric designed to assess and rank uncertainty measures for the task of brain tumour sub-tissue segmentation in the BraTS 2019 sub-challenge on uncertainty quantification. The metric is designed to: (1) reward uncertainty measures where high confidence is assigned to correct assertions, and where incorrect assertions are assigned low confidence and (2) penalize measures that have higher percentages of under-confident correct assertions. Here, the workings of the components of the metric are explored based on a number of popular uncertainty measures evaluated on the BraTS 2019 dataset.