论文标题
LR-CNN:局部感知区域CNN用于航空影像中的车辆检测
LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery
论文作者
论文摘要
最先进的对象检测方法,例如快速/更快的R-CNN,SSD或Yolo,在大型航空图像中以任意方向检测具有任意取向的密集的小目标困难。主要原因是,使用插值来对齐ROI功能可能导致缺乏准确性甚至丢失位置信息。我们介绍了局部感知区域卷积神经网络(LR-CNN),这是一种新型的两阶段方法,用于航空影像中的车辆检测。我们通过汇总高精度ROI的特征来提高翻译不变性,以检测密集车辆并解决密集车辆之间的边界量化问题。此外,我们重新采样了高级语义合并功能,使它们从较浅的卷积块的功能中恢复了位置信息。这增强了重新采样功能的局部特征不变性,并可以在任意方向上检测车辆。局部特征不变性增强了焦点损失函数的学习能力,局部损失进一步有助于专注于硬示例。综上所述,我们的方法更好地解决了空中图像的挑战。我们在几个具有挑战性的数据集(Vedai,dota)上评估了我们的方法,证明了对最新方法的显着改善。我们证明了在DLR 3K数据集上我们的方法的良好概括能力。
State-of-the-art object detection approaches such as Fast/Faster R-CNN, SSD, or YOLO have difficulties detecting dense, small targets with arbitrary orientation in large aerial images. The main reason is that using interpolation to align RoI features can result in a lack of accuracy or even loss of location information. We present the Local-aware Region Convolutional Neural Network (LR-CNN), a novel two-stage approach for vehicle detection in aerial imagery. We enhance translation invariance to detect dense vehicles and address the boundary quantization issue amongst dense vehicles by aggregating the high-precision RoIs' features. Moreover, we resample high-level semantic pooled features, making them regain location information from the features of a shallower convolutional block. This strengthens the local feature invariance for the resampled features and enables detecting vehicles in an arbitrary orientation. The local feature invariance enhances the learning ability of the focal loss function, and the focal loss further helps to focus on the hard examples. Taken together, our method better addresses the challenges of aerial imagery. We evaluate our approach on several challenging datasets (VEDAI, DOTA), demonstrating a significant improvement over state-of-the-art methods. We demonstrate the good generalization ability of our approach on the DLR 3K dataset.