论文标题
粘合梁线和检测器
The GlueX Beamline and Detector
论文作者
论文摘要
Jefferson Lab的Gluex实验已被设计为研究9-GEV线性偏振光子束的光生型反应。光束光子的能量和到达时间是使用闪烁镜和闪烁纤维阵列标记的。使用配对光谱仪确定光子通量,而光子束的线性极化是使用基于三重态光生成的偏振仪确定的。使用中央秸秆管漂移室和带有阴极条和漂移线的六包平面腔室在螺线管场中分析中央目标相互作用的带电粒子轨道。电磁淋浴在磁铁内部的圆柱形闪光量倍量和下游的铅玻璃阵列中重建。通过测量电线室中的能量损失以及使用磁铁外的目标和检测器之间的颗粒飞行时间来实现带电的粒子识别。所有检测器的信号均记录使用Flash ADC和/或管道TDC中的记忆,允许触发决策,延迟为3.3 $μ$ s。该检测器以40 kHz的触发率常规运行,每秒600兆字节的数据速率。我们描述了光子束,粘合剂检测器组件,电子设备,数据收购和监视系统,以及在操作的头三年中的实验性能。
The GlueX experiment at Jefferson Lab has been designed to study photoproduction reactions with a 9-GeV linearly polarized photon beam. The energy and arrival time of beam photons are tagged using a scintillator hodoscope and a scintillating fiber array. The photon flux is determined using a pair spectrometer, while the linear polarization of the photon beam is determined using a polarimeter based on triplet photoproduction. Charged-particle tracks from interactions in the central target are analyzed in a solenoidal field using a central straw-tube drift chamber and six packages of planar chambers with cathode strips and drift wires. Electromagnetic showers are reconstructed in a cylindrical scintillating fiber calorimeter inside the magnet and a lead-glass array downstream. Charged particle identification is achieved by measuring energy loss in the wire chambers and using the flight time of particles between the target and detectors outside the magnet. The signals from all detectors are recorded with flash ADCs and/or pipeline TDCs into memories allowing trigger decisions with a latency of 3.3 $μ$s. The detector operates routinely at trigger rates of 40 kHz and data rates of 600 megabytes per second. We describe the photon beam, the GlueX detector components, electronics, data-acquisition and monitoring systems, and the performance of the experiment during the first three years of operation.